Embryonic Legerdemain?

Developmental biologist Lewis Wolpert is credited with saying, “It is not birth, marriage, or death, but gastrulation which is truly the most important time in your life.” Gastrulation, simply put, means the embryo develops an axis and distinctly different cell layers. In the human embryo, gastrulation takes place during the third week post-fertilization. Formation of endoderm occurs over days 14-15, and the mesoderm begins to appear on day 16 (see Figure 1-11 here).  Ali Brivanlou, of New York’s Rockefeller University, identifies gastrulation, or the breaking of symmetry in the embryo, as the “major Holy Grail of developmental biology.”

Why is this so? During the third week after conception, the embryo has burrowed into the mother’s womb, and the peering eyes of scientists cannot visualize the events there. With the 14-day rule in place regarding embryo research, laws or guidelines in various locales outlaw or discourage (as in, do not fund) laboratory culturing of embryos beyond that point. So, Brivanlou’s lab “came up with a model of human embryos that is developed outside of the womb and is not the product of sperm and eggs, but the product of human embryonic stem cells that self-organize into complicated structures.”  These embryonic stem cells have formed what appears to be an embryo, but in Brivanlou’s terms, “could never become a baby.”

Dehumanizing the embryo is one of the essential components of making research on embryonic humans more palatable to the public. It will also be en essential step in a workaround of the 14-day rule. It appears that “model embryo” will join other terms such as “embryoids,” “gastruloids,” and “SHEEFs” as some element of humanity that scientists do not recognize as humans worthy of legal protection. Regarding Brivanlou’s “model embryo,” Harvard Medical School’s Dean George Daley calls it a “remarkable tool in a petri dish.” The “tool” with which Brivanlou and others concern themselves is both human and alive; otherwise, would they be interested?

Let’s think about this, using an analogue. If well-trained scientists could produce men and women without chests, what would be allowed? Would they have to call such men and women without chests “human”? Could they use men and women without chests for experiments?  Would the experiments have to be approved by institutional review boards?  Would the rest of us pay the scientists – handsomely – to do this? Could they win prizes?

Technical steps to gene-edited babies

This blog has carried several comments about the prospect of heritable human gene editing.  While nearly no one currently supports bringing such babies to birth—and condemns those who would rush ahead to do so—it appears a distinct minority think that we the human race should, if we could, agree never to do such a thing.  The most cautious perspective is to advocate a moratorium.  Others in favor of proceeding argue that, in essence, with the technologic genie (my term, not necessarily theirs) out of the box, a moratorium, much less a ban, is futile; the “rogues” will press ahead, casting off restraint. 

Advocates of research in this area have argued that a clear, careful, regulated pathway is needed to guide the work through necessary laboratory experiments that should be done first, before making a woman pregnant with a gene-edited embryo, in an attempt to be sure that the process is safe and highly likely to yield the intended result.  Even a moratorium would be, by definition, temporary, leaving the question, “when we will know to remove the moratorium?” to be answered.

A feature article in Nature, accessible without a paid subscription, asks “When will the world be ready” for gene-edited babies.  It walks through scientists’ understanding of what the technical issues are.  It is longer than a blog post, so I can only list key points here.  It is worth a reading by anyone interested, and it is written in sufficiently non-technical language that it’s accessible to the general, non-scientist public.

Key concerns are:

  • How would we be sure that genes that were NOT intended to be edited, in fact were not?
  • How would we be sure that genes that ARE intended to be edited are edited correctly?

These two matters have been addressed to some degree, or could be, in animals, but that would be faster and easier than in human egg cells or human embryos, and the results in animals may be different from what is found in the embryos.  (A further question is how many embryos, observed for how long, would need to be studied to support confidence.)

  • Even if the intended gene edit is made, is it clear that doing so is safe and does not induce other health risks? 

This blog recently reported the UK study that suggested that changes in the gene edited in the twin girls born in China last year might eventually reduce life span.  A criterion promulgated in 2017 by the National Academies of Sciences, Engineering, and Medicine was that the edited gene should be common in the population and carry no known risk (including, presumably, no increased risk) of disease.  Such knowledge is lacking for human populations, and what is believed known about the association of genes with risk of future disease has often been developed in Western populations, and may not apply to, for example, Africans.

  • At least some embryos would include some edited and some non-edited cells.  It would not easily be possible, if possible at all, to tell how many of which were present, or needed to be for the editing to work and not cause risks to the embryo’s development into a baby and beyond.  And what answers were obtained would require manipulating healthy embryos after in vitro fertilization.  The outcomes could not be predicted from first principles.
  • What should a clinical trial look like?  How many edited children would have to be born, and their health (and, most likely, the health of their progeny) observed for how long to get provisional answers before practicing the technique more widely?  Or, would the work proceed as IVF did—with dissemination in the general public, and no regulated research?

A US and UK committee is planned to address these questions, with the intent of proposing guidelines in 2020.  This will be important to follow, but with no chance to affect.  Most of us will just be watching, which leads to the last concern:

  • Is the world ready?

If that means, is there an international, or even a national, consensus, then the answer is clearly “no.”  That almost certainly remains “no” if one asks whether there is a future prospect for consensus.  It’s hard to envision something other than different groups and nations holding different judgments, and, most likely, remaining in some degree of irresolvable conflict.

More gene-edited babies on the way

It is reported this week that a Russian scientist plans to edit the genes of more human embryos intending to bring gene-edited babies to birth.  As with the case in China last year, the intent is to edit a gene called CCR5 that is responsible for a receptor that facilitates initiation of HIV infection.  The stated reason is to prevent transmission of infection from the mother, not the father, as in the Chinese case.  Maternal transmission of HIV is a real risk, but there are other ways to prevent it, with medications.  And, as recently reported on this blog, the risks of editing this gene are not understood, nor are the long-term risks of heritable genome editing.

The science press is saying that someone should put a stop, now, to bringing edited embryos to pregnancy and birth.  But it is unlikely that effective action can be taken.  The public will has not been engaged, necessary medical research controls are not in place, and no one can say just who would have the authority to take what sort of action.

So for the moment there is little else to say.  We will hear of more cases.  We will find out later how we will respond.  Clarity and consistency of that response seem unlikely. https:/

Proposed moratorium on human germline: Asilomar analogue?

The Editorial Board of The Washington Post (WaPo) recently published their opinion  on regulation of heritable genetic changes in human eggs, sperm, and embryos. The authors expressed some measure of relief that organizations such as the National Academies in the U.S., the Royal Society in Britain, and the World Health Organization are beginning to consider the daunting topic of human heritable genetic changes. The board advised, “The goal must be a framework that will enable genuine scientific advancement but avoid reckless fiddling with the source code of life.”

The WaPo editorial board further recommended “something of similar scope and power” to that of the Asilomar Conference on Recombinant DNA Molecules, held in February 1975. Asilomar, as that conference came to be called, was convened to evaluate the risks posed by the novel technology of genetically modifying organisms. The public perception of Asilomar has been primarily one of scientists shouldering the “social responsibility of science.”

Further, the WaPo article pointed out that one of the authors of the March 2019 Nature commentary calling for a “global, temporary moratorium on clinical uses of human germline editing” was Paul Berg, a Nobel laureate, and one of the organizers of the Asilomar conference. The Nature commentary, authored by Eric Lander, Françoise Baylis, Feng Zhang, Emmanuelle Charpentier, and Paul Berg, described the consensus for a moratorium thusly:

The 18 signatories of this call include scientists and ethicists who are citizens of 7 countries. Many of us have been involved in the gene-editing field by developing and applying the technology, organizing and speaking at international summits, serving on national advisory committees and studying the ethical issues raised.

This description appears to differ substantively from one Berg gave of the Asilomar analogue. In an 18 June 2011 video interview by Larry Goldstein, Berg had this to say about the success of Asilomar:

We made some decisions that were smart in retrospect. For example, one of the things we did not do – and did not include in any way in the agenda was the ethics. We didn’t talk about genetic testing… we talked about real experiments, and what the impact of those experiments would be in the field (10:40-10:58)

Of the five authors calling for a moratorium on human heritable genetic changes, only Françoise Baylis is an ethicist. A 2004 article penned by Baylis and Jason Scott Robert, “The Inevitability of Genetic Enhancement Technologies,” gives insight to her views. The paper concludes with

. . . we maintain that accepting the inevitability of genetic enhancement technologies is an important and necessary step forward in the ethical debate about the development and use of such technologies. We need to change the lens through which we perceive, and therefore approach, the prospect of enhancing humans genetically. In recognising the futility of trying to stop these technologies, we can usefully direct our energies to a systematic analysis of the appropriate scope of their use. The goal of such a project would be to influence how the technologies will be developed, and the individual, social, cultural, political, economic, ecological, and evolutionary ends the technologies should serve. It is to these tasks that bioethical attention must now fully turn.

It appears that 1) Paul Berg’s previous concerns about “ethics” being involved is not a problem to date in this enterprise; and 2) the called-for moratorium is truly only a “speed bump” on the road to converting future generations into our own laboratory experiments. The “individual” ends such experiments will serve are likely to be the individuals who are paid handsomely to do such experiments or who hold the patents to the processes utilized – not the individuals formed. Despite the extensive embrace of heritable human genome editing by the principals cited here, we need to remember that this is not a road that we must travel. Future generations are not our playground. We need to rethink this “moratorium”:  It should be an outright ban.

Emerging attempts to control gene editing

Recently, it was reported that the panel convened by the World Health Organization (WHO) to develop standards and guidelines for gene editing will ask the WHO to establish a registry for any projects on heritable human gene editing.  The idea is that, to get research funding, a project would have to be registered, and there would be a required review in order to get on the registry in the first place.  The net effect would be to control the flow of money to such projects.

Also, according to Nature, the Chinese government is looking at amending its civil code, effective March 2020, to in essence make a gene editor liable for health outcomes by declaring that “experiments on genes in adults or embryos that endanger human health or violate ethical norms can accordingly be seen as a violation of a person’s fundamental rights.”  The idea here appears to be to make gene editors think twice about whether they are sure enough of their work to accept essentially a permanent risk of being sued for all they are worth if anything goes wrong in the future.  Your correspondent knows nothing about Chinese civil procedure, but in the litigious U.S., the risk of really big, unpredictable lawsuits at some entirely unpredictable time in the future, with no limit, can make even big companies shy to pursue something. 

So maybe these approaches, by “following the money,” as it were, would at least slow down heritable genome editing, short of a ban.  Skeptics of the utility or wisdom of a ban argue that the “rogues” will just find work-arounds anyway, and that entire states can “go rogue,” limiting the effects of the ban to only the nations willing to enact and enforce it.

That’s a reasonable argument, but it still seems that, by only requiring a registry—with noncompliance always a risk—or trying to up the ante in court—a risk that some entities might take if the perceived reward is big enough to warrant it, and they can hire enough expansive lawyers to limit the risk—there is an admission that heritable genome editing is going to go forward.  And, indeed, maybe there’s no stopping it.  But it seems like promoting a stance toward human life that refuses to accept heritable gene editing is still something we should do.

Human germline gene editing is not a solution for genetic diseases

By Steve Phillips

I have said this before (see post on 12/5/18), but since otherwise intelligent people continue to say that we should pursue human germline gene editing because it can be used as a means of eliminating the transmission of genetic diseases to future generations, I need to say it one more time. There is no reason to expect that editing the genes of human embryos will ever be a practical and effective way to eliminate the transmission of genetic diseases to future generations.

There are several reasons for this. One is that the elimination of genetic diseases in future generations would require the widespread screening of all potential parents to identify everyone who would need to use this technique for it to actually eliminate a genetic disease. There is no reason to think that that will ever be practically possible and if it were possible it would require an extreme limitation on personal liberty (think Brave New World). If genetic diseases cannot be eliminated using this technique, then what those who take this position must be advocating using it as a means for a particular couple to avoid passing on a genetic disease when they know that they are carriers of that disease. There are additional reasons why gene editing will not be practical and effective for that.

If the couple’s sole priority is to eliminate the possibility of passing on the genetic disorder that they carry to a child, the simplest and most effective way to accomplish that is to choose not to conceive children. That means that their desire to have and raise children would need to be fulfilled through adoption, but it is the most effective way of achieving the goal of not passing on the genetic disorder that they carry. If this method is not chosen, the couple must recognize that they are trying to accomplish two goals, both having their own biological child and not transmitting the inherited disease.

For the large majority of couples trying to accomplish both of those goals the method with the least risk and highest likelihood of success would be creating a child through IVF and using preimplantation genetic diagnosis (PGD) to choose an unaffected embryo to be implanted in born. However, this method carries significant moral concerns related to the creation and elimination of embryos who have the genetic disorder. Some might think that this moral concern would be a reason to choose gene editing instead, but it is not that simple. The development of the technique of human embryonic gene editing will require using human embryos as research subjects who will be destroyed as an essential step in the research to establish the effectiveness of this technique. This means that it is not a morally superior technique for those who are concerned about the value of the life of a human embryo.

If a couple would choose to pursue embryonic gene editing for the purpose of having a biological child who did not suffer from a genetic disorder that the couple carries, there are still other problems. If gene editing is being used to transform an embryo with a genetic disorder to an embryo without that genetic disorder, it would be necessary to be able to determine that the embryo actually has the disorder before doing the gene editing. Except for the case of two potential parents homozygous for a recessive disorder, some diagnostic test would be needed. We can currently diagnose many genetic disorders in a multi-cell embryo produced by IVF by using PGD. However, for embryonic gene editing to be effective in completely removing the genes for a genetic disorder and replacing them with normal genes the best time to do the gene editing is at the single cell stage. Even if it is established that gene editing can be done effectively and safely, it is hard to see how we would be able to establish that a single cell human zygote has the genetic disorder prior to treating that single cell.

For all of these reasons, the situations in which human embryonic gene editing would possibly be the preferred means of creating a child without a genetic disorder would be quite rare. It is much more likely that the technique would be used for enhancement.

One side of the argument about heritable human gene editing

The current issue of the New England Journal of Medicine (subscription required) includes four new articles addressing heritable human gene editing.

George Daley (who was also discussed in a post on this blog last December 6) argues that work must proceed to find a responsible way of editing the human germline for people with genetic diseases that are devastating, untreatable, and largely unavoidable unless affected people forego having children.  This would be a limited use of heritable gene editing, he holds, although it may ultimately become attractive to the 1-4% of offspring of unrelated people who have genetic diseases, who seek to eliminate risk of passing on those diseases, or risk of them, to future generations.  He thinks that “our ignorance” regarding genetic complexity will ultimately prevent attempts at begetting genetically enhanced, “designer” children.

Matthew Porteus reviews “the new class of medicines” becoming possible due to DNA editing.  These include genetically modified cells as drugs, other attempts to treat existing people with known genetic disease by editing genes in part of their bodies, and, eventually, editing humans so that the genes they transmit to future generations are permanently altered. 

Lisa Rosenbaum reviews several of the objections to heritable gene editing that can stand in the way of scientific and social consensus.  Among these, she points out that people with disabilities often live very fruitful lives—lives that may never have come to be if their parents had the chance to edit their genomes, or not brought them to birth in favor of another embryo selected, without editing, through preimplantation genetic diagnosis.  But some disabilities are too severe to allow fruitful lives.  In such cases, she asks, “who is qualified to decide whether it is ethical to alter these children’s fate?”  If you think you can edit a baby destined to suffer severe genetic disease, are you obligated to try?  In that case, there’s “no such thing as an ‘informed decision’…you can’t know until you know.”

Alta Charo, who has co-led several recent prominent international conferences on human gene editing, argues that the “rogues” will proceed to edit people irresponsibly, even—and perhaps especially—in the face of a moratorium.  A more effect approach would be an “ecosystem” of restrictions, including formal regulation, restriction on supplies of raw materials (that is, human eggs, sperm, and embryos) for experimentation, patent and licensing restrictions, health insurance policies, liability for lawsuits, and the like.  Broad, international consensus is an unlikely prospect, she argues, but individual nations may enact their own regimes.  Whether this would really stop a black market is questionable, and heritable editing would become the province of favored entities (government or industry), I suppose—perhaps slowing the whole process down but leaving objections to the practice unsatisfied.

Each of these authors condemns He Jiankui’s claimed editing of Chinese twin girls who were born late last year.  Each of them also clearly takes the position that human gene editing should be regulated, either because it should proceed or because it will, inevitably, proceed. 

None of the authors suggests that heritable human gene editing should “never” be done, the position Francis Collins, the head of the US National Institutes of Health, took on Gerry Baker’s WSJ at Large on the Fox Business Network on Feb 22, 2019.  (I would link it but it appears that the clip has not been preserved on the network’s website.)

This blog recently recounted some reasons why heritable human gene editing should not be pursued.  But the train appears to have left the station.

The new WHO advisory panel on human gene editing

By Jon Holmlund

The World Health Organization (WHO) has empaneled an expert advisory committee to propose standards for governance and oversight of human gene editing.

This group is to meet in Geneva on March 18 and 19 to review the state of the field, broadly, and formulate a plan for its work, over the ensuing 12-18 months.  Sounds like your basic organizational meeting. 

The WHO website does not specify a more detailed charge for the committee, which no doubt will determine its goals.  It is said to have been formed “after an open call for members,” implying, I suppose, that the members volunteered, as opposed to being invited or otherwise prevailed upon.

The co-chairs are Edwin Cameron, former Justice of South Africa’s Constitutional Court, and Margaret Hamburg, who, among her other positions, was FDA Commissioner under Barack Obama.

A review of the full list of biographical sketches for the members shows that they are a truly international group, representing nations from the developed and developing world, and from all continents (except Antarctica, of course).  They are a mix of physicians, biologists, and ethicists.  None appears immediately recognizable from the recent media coverage of human gene editing.  If there are members with a specific interest in promoting technology, that is not obvious from the list, which WHO further says was limited to people screened carefully for conflicts of interest.

One can tell but little from such bio sketches, but in this case it at least appears that a broad range of cultural perspectives will be represented.

There is no clear representation for a theistic or religious perspective.  Also, because the work of such a group naturally draws and involves scientific specialists, the broader, non-scientific, “lay” public is not represented.

Past work by these members addressing gene editing will be of interest to review, which your present correspondent has not, yet.

One hopes that this group will offer wise counsel that, as discussed in prior posts to this blog and elsewhere, goes beyond the usual, limited “benefit-risk” estimates that characterize Western bioethics.

But it will unavoidably not constitute the broad, cosmopolitan, multinational and multiethnic, naturalistic and theistic dialogue that is hoped for—probably too much to hope for, too much to ask of a group of 18 people—in advance of broad adoption of heritable human gene editing, which appears inexorable.

Godspeed and best of success to this group—follow its work as closely as possible. ity51 \lsdl

Summarizing ethical issues with heritable human gene editing

By Jon Holmlund

A brief recap of reasons why we should not pursue heritable human gene editing:

It seems unlikely that risks to immediately-treated generations can be predicted with the accuracy we currently and reasonably expect from human subject research and medical practice.

Risks to later generations, that is, to the descendants of edited people, would be incalculable, and the informed consent of those later generations would be unobtainable.

To allow heritable gene editing even in the uncommon cases of untreatable, devastating genetic illness is to place too much faith in the ability of human providence to identify, and human behavior to observe, firm boundaries on its eventual use. 

Eventual use will become unavoidably subject to a eugenic approach in which the key decision will be what sort of people do we want, what sort of people should be allowed to receive life.

There will be no end to the disagreement over what edits should be permitted, and to the vilification of those considered to have been illegitimately edited, from those who object to their existence, perceived unfair advantage, or other characteristic.

Human populations will become stratified into the “edited” and the natural, introducing deep new justice concerns.  The main issue will be not will humans be gene-edited, but what should be the social status of those who are. 

To reduce heritable human gene editing to a reliable practice requires submitting it to the paradigm of manufacturing, as in drug development, with children seen as quality-controlled products of choice, not gifts of procreation.   To develop the practice, a “translational model,” again analogous to drug development, is necessary, with human embryos serving as raw materials, and, of necessity, a large, indeterminate number created and destroyed solely for development purposes, for the benefit of other humans yet to be born, and of those who would raise them.

Quite possibly, the translational model will demand great license on the extent to which embryos and fetuses may be experimented on; to wit, longer and longer gestations, followed by abortion of later and later stage, to further verify the success of the editing process.

In the extreme situation, the degree of editing may change the human organism in ways that will create a “successor” species to homo sapiens whose nature and desirability cannot be reasonably envisioned at this time.  In the extreme situation.

Even granting that this last scenario may never really arrive in ways that fiction writers can easily imagine, the other reasons should be enough that we simply don’t move heritable gene editing forward.

National Public Radio recently reported on the gene editing of human embryos—one day old—in the laboratory, in an attempt to correct and eliminate the inherited cause of blindness, retinitis pigmentosa.  The end is laudable.  The means is not.  We should not race ahead without considering why, first.  Then, we should not move ahead, but seek alternate means to the medical ends.

Edited embryos should not be created and brought to term—certainly not now, and I would say, not ever.  To be outraged over the former but not the laboratory creation of edited embryos is insufficient.  Both are outrages, although outrage over the recently-claimed birthing of edited babies in China is real, not “faux,” as one reaction held.  Still, the authors of that reaction are correct that one’s condemnation of the China event somehow justifies the laboratory work.  It does not. One last point: The Economist carried an essay decrying the birth of the edited twins in China as a case of “ethical dumping,” the practice of carrying out human subject research that would be disallowed in the West in other, perhaps less advanced (although China is certainly not backward), nations with fewer ethical scruples.  A valid point—but not one to cloak oneself in, while trying to justify the efforts to edit humans in ways that can be passed on from generation to generation.

Abortion, at any time, for any reason?

By Mark McQuain

Last week, Virginia delegate Kathy Tran introduced a bill to eliminate some current restrictions on late term abortions in the Commonwealth. During the committee hearing on the bill, she answered a question by one of the other committee members to the effect that her bill would permit a third trimester abortion up to and including the point of birth. That exchange may be heard here. She later “walked back” that particular comment as outlined here. Virginia Governor Ralph Northam, who is a pediatric neurologist by training, added his comments to the discussion on a call-in WTOP radio show, where he implied that the bill would additionally permit parent(s) and physician(s) to terminate the life of a “severely deformed”, “non-viable” infant after the birth of the infant, which may be heard here (the entire 50+ minute WTPO interview may be heard here). That particular bill is currently tabled (the actual bill may be read here).

These events deserve far more reflection and discussion than can be afforded in the small space of this blog. I want to discuss two comments by Governor Northam and then comment on expanding abortion to include the extreme limit of birth.

First, during his radio interview, the Governor added qualifiers to the status of the infant that are not only not in the bill submitted by Delegate Tran, they are specifically contrary to it. Section 18.2-74(c) of the Code of Virginia is amended by Tran’s House Bill No. 2491 to read ([w]hen abortion or termination of pregnancy lawful after second trimester of pregnancy):

“Measures for life support for the product of such abortion or miscarriage must shall be available and utilized if there is any clearly visible evidence of viability. “(markup/emphasis in the bill)

To be generous to the Governor, it is unclear why he qualified his comments the way he did, given that the bill is explicitly discussing a potentially viable infant. Options include that the Governor was simply ignorant of the specifics of Tran’s Bill (possibly), was actually purposefully advocating for infanticide (unlikely), or wanted to defend the loosening of restrictions on very late term abortions, clearly intended by her bill, by introducing at least one conditional situation that a number of people might initially consider reasonable (most likely). The firestorm caused by his so-called “post-birth-abortion” comment completely obscured any attention to the equally tragic portion of Tran’s Bill that eliminates a huge portion of the Code of Virginia section 18.2-76, which currently requires a much more specific informed consent process, inclusive of a pre-abortion fetal ultrasound to attempt to educate the woman on the nature of the human being she is desiring to abort.

The second comment by Governor Northam was made parenthetically while expressing his opinion that the abortion decision should be kept between a physician and the pregnant woman, and out of the hands of the legislature, “who are mostly men”. Does this imply all men be excluded from the abortion discussion or just male legislators? Should male obstetricians likewise be excluded from this discussion? Following the Governor’s comment to its logical conclusion, shouldn’t he refrain from similar comments/opinions regarding abortion since he is also a man? This is absurd. Representative government specifically, and civil discourse more generally, is not possible if ideas cannot be debated unless the particular people involved in the debate are all the same sex, same race, same ethnicity, same height, same weight, same age, etc…

Aborting a healthy, viable baby just prior to, or, at the very moment of, birth seems to me to be the least likely example of the type of abortion that anyone on the pro-choice side of the abortion debate would use to make the case that abortion is a good and necessary right. Presently, immediately after birth, the baby (finally) has the protection as a person under the Fourteenth Amendment. Eerily, as I have shared in this blog before, almost identical concepts were discussed during the 1972 oral arguments of Roe v. Wade, such as the following exchange between Justice Potter Stewart and attorney Sarah Weddington, who represented Roe. (see LINK for transcript or audio of the second reargument Oct 11, 1972, approximately one-third of the way through):

Potter Stewart: Well, if it were established that an unborn fetus is a person within the protection of the Fourteenth Amendment, you would have almost an impossible case here, would you not?

Sarah R. Weddington: I would have a very difficult case. [Laughter]

Potter Stewart: You certainly would because you’d have the same kind of thing you’d have to say that this would be the equivalent to after the child was born.

Sarah R. Weddington That’s right.

Potter Stewart: If the mother thought that it bothered her health having the child around, she could have it killed. Isn’t that correct?

Sarah R. Weddington: That’s correct.

I am one blogger who is praying that Governor Northam’s “post-birth-abortion” misunderstanding of Delegate Kathy Tran’s Bill liberalizing abortions through the end of the third trimester never causes Justice Potter’s 1972 infanticide equivalent to become a reality.